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ABSTRACT 

For positive integers r and s, f'(r, s) is defined as the smallest positive integer 
p such that every connected (ordinary) graph of order p contains either r 
mutually adjacent lines or s mutually disjoint lines. It is found that f ' (r ,  s) 
= ( r - 1 ) ( s - 1 )  + 2  unless r = 2  and s ~ 1, in which case f ' ( 2 , s ) ~ 3 .  

By the Ramsey number f(r,  s) is meant the smallest positive integer p such that 
every graph (finite, undirected, with no loops or multiple lines) of order p contains 
either r mutually adjacent points or s mutually disjoint points. These numbers 
have been studied extensively by Erd6s [1, 2, 3, and 4], Erd6s and Szekeres [5], 
Greenwood and Gleason [6], and others, who have found various bounds for 
f(r,  s). The exact values o f f ( r ,  s) are not, in general, known. 

In this note we consider the line analog of this problem to which we give a 
complete solution. First we observe that in the definition, given above, of f (r ,  s) 
the class of graphs can be restricted to that of connected ones except for the trivial 
cases in which r = 2. We now define, for positive integers r and s, f ' (r ,s)  as the 
smallest positive integer p such that every connected graph of order p contains 
either r mutually adjacent lines or s mutually disjoint lines. Our main result 
(Theorem 3) gives the exact value of f ' ( r , s )  for every r and s. 

It is worth mentioning here that if the word "connected" is omitted in the 
above definition, then f ' (r ,s)  would not exist. 

For convenience we introduce the symbol ~¢(r,s) to denote the class of all 
connected graphs which have either r mutually adjacent lines or s mutually 
disjoint lines. 

LEMMA 1. Let g(r,s) be the smallest positive integer p such that every tree 
of order p is in sd(r, s). Then g(r, s) = f ' (r ,  s). 

Proof. It suffices to show that f ' (r ,  s)< g(r, s). By the definition of f ' (r ,  s) 
there exists a connected graph G of order f ' (r ,  s) - 1 which is not in d ( r ,  s). 
Let Go be a spanning tree of G (a subgraph of G which is a tree and contains all 
the points of G). But Go cannot belong to ~¢(r, s), implying that g(r, s) > f ' ( r ,  s) - 1. 

Received January 9, 1967. 
* Definitions not given here can be found in [7, 8]. 
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The above lemma permits us to restrict ourselves to trees in what follows. 

LEMMA 2. In any non-trivial tree there exist two adjacent points a and b, 

deg a = 1, such that at most one point adjacent with b has degree greater than 1. 

Proof. Assuming that the lemma holds for all trees with less than p points, 
p > 1, we use induction as follows. Let v be any point of a tree G of order p with 
deg v=  1, and let u be the point adjacent with v. Ifdeg u <2, the lemma immediately 
follows. Assuming deg u > 2, we observe that the graph Go obtained from G by 
the removal of v is a tree of order p - 1. The points a and b of Go whose existence 
has been hypothesised are also effective for G. 

Before stating Theorem 1, we mention that a star graph of order p is a tree all 
of whose p - 1 lines are incident with one point. 

THEOREM 1. For r > 2, s > 1, we have f ' ( r , s )  > (r - 1)(s - 1) + 1. 

Proof. For each pair of positive integers r and s, r > 2, s > 1, we shall construct 
a tree of order ( r -  1) ( s -  1) + 1 which is not in ~/(r, s). Let G~, G2, "", and Gs- 1 
be s - 1 copies of the star graph of order r. For each i, i = 1, 2,. . . ,  s - 2, " ident ify" 
a point of degree 1 of G~ with a point of degree 1 of G~+t, to obtain a tree T o f  
order (r - 1)(s - 1) + 1. (See Fig. 1 for an illustration in which r = 6 and s = 5.) 

Fig. 1 

Since Tdoes not contain any point of degree r, in order to show that Tis not in 
~/(r, s), it suffices to observe that disjoint lines of Tnecessarily come from distinct 
G~'S. 

In the proof of the next theorem we shall need the class of all trees of order 
f ( r ,  s) - 1 which are not in ~ ( r ,  s). For this reason we define ~(r ,  s), r > 2, s > 1. 
For a fixed r > 2 let ~(r ,2)  be the class consisting of the single star graph of 
order r. Having constructed ~(r ,  s - 1), we define ~(r ,  s) as follows. Let Tbe any 
member of ~( r ,  s - 1). We "identify" any point of degree 1 of Twith a point of 
degree 1 of the star graph of order r to obtain a tree G. The class ~( r ,  s) is the set of 
all such trees as G. We note that every member of ~( r ,  s) is of order ( r -  1)(s - 1) 
+ 1. As an illustration we mention that the trees given in Fig. 1 and Fig. 2 are, 
up to isomorphism, the only members of ~(6,5). 

TI-I~OI~M 2. For r > 2 ,  s > l ,  we have f ' ( r , s ) = ( r - 1 ) ( s - 1 ) +  2. 
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Fig. 2 

Proof. By Theorem 1, f ' ( r , 2 )  > r. Since every tree of order r + 1 is either 
the star graph of order r + 1 or else it contains two disjoint lines, we have 
f ' ( r , 2 )  = r + 1 for all r > 2. We note that for every r > 2 the star graph of order r 
is the only tree of this order which is not in ~¢(r, 2). 

We now proceed by induction on s. For a fixed r, r > 2, assume that the members 
of g ( r ,  s - 1) are the only trees of order greater than or equal to (r - 1 ) ( s -  2) + 1 
which are not in ~¢(r, s - 1). Now, by the definition of f '(r, s) and by Lemma 1, 
there exists a tree of order f ' ( r , s )  - 1 not belonging to s/(r ,s) .  Suppose G is any 
such tree. Let a and b be the two points of G determined by Lemma 2. By the 
assumption on G, deg b < r - 1; hence the removal from G of all the lines in- 
cident with b will result in a tree Go of order Po, Po > f ' ( r , s ) -  r, together with 
some isolated points. It follows from Theorem 1 that Po > ( r -  1 ) ( s -  2 ) +  1. 
The induction hypothesis now implies that Go is in ~( r ,  s -  1). Hence 
Po = f ' ( r , s ) -  r = ( r -  1 ) ( s -  2 ) +  1, from which it follows that 

i) f ' ( r , s )  = ( r -  1 ) ( s -  1 ) + 2 ,  and 
ii) the degree of b in G is r - 1, implying that G is in ~(r ,s) .  
Before stating the main result we observe that: 
1) f ' ( r ,  1)=  2 for every r, 
2) f ' ( 1 , s ) =  2 for every s, and 
3) f ' (2 ,  s) = 3 for all s > 1. 

THEOREM 3. For r = 2 and s > 1 we always have f ' (2 ,s )  = 3. For all other 
positive integers r and s the formula f ' ( r , s ) =  ( r -  1 ) ( s -  1 )+  2 holds. 

It is perhaps worth mentioning that, in contrast with the case of f ( r ,  s), the 
symmetricity in r and s of  the function f ' ( r ,  s), just established for almost all 
values of  r and s, is not at all self-evident. 

In conclusion we would like to thank Professors E. A, Nordhaus and B. M. 
Stewart of Michigan State University for pointing out an error in the original 
manuscript. 
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